
LAMINAR-TURBULENT TRANSITION: A THEORETICAL

MODEL OF THE NONLINEAR EVOLUTION OF THREE

DIMENSIONAL WAVETRAINS IN BOUNDARY LAYERS

Marcello A. F aracode Medeiros

P ontif��ciaUniversidade Cat� olica deMinas Gerais, Departamento de Engenharia

Mecânica

Av. Dom Jos�eGaspar, 500, Belo Horizonte, 30535-610 - MG - Brazil.

Summary. A weakly nonlinear model of the evolution of three-dimensional

wavetrains in boundary layers is presented. This was motivated by wind tunnel

experiments with wavetrains emanating from a point source. The experiments that

showed that the �rst signature of nonlinearity was the appearance of secondary

mean 
ow distortions. The distortions were in the form of longitudinal streaks

with a sp anwise structure which increased in complexity with the downstream

evolution. The model linked the streaks with a pair counter-rotating longitudinal

vorticies that distort the base mean 
ow by a litf-up mechanism of redistribution

of streamwise momentum. The more complicate d structures developed further

downstream ar ealso addressed. They ar eexplained by a second order correction

to the weakly nonlinear model. The results show qualitative agreement with the

experimental observations.
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1. INTRODUCTION

The laminar-turbulent transition process that occurs naturally often involves

oscillations that are highly three-dimensional. Despite its practical importance,

the mechanisms in volv edare not fully understood, and further inv estigation is

needed in to the nonlinear ev olution of such disturbances. The current paper



presents a theoretical model for the nonlinear evolution of a wavetrain of small

amplitude emanating from a point source in a 
at plate boundary layer.

The study has its roots in the work of Gaster who carried out an experi-

mental investigation of the linear and nonlinear evolution of a wavepacket in a


at plate boundary layers (Gaster and Grant, 1975) and developeded theoretical

model for the linear stage (Gaster, 1975). More recently Medeiros (1996) and

Medeiros and Gaster (1999a, 1999b) carried out further experimental, numeri-

cal and theoretical work in the subject. The investigation concluded that the

early stages of the nonlinear evolution of wavepackets could not be entirely ex-

plained by the secondary instability mechanisms that have been observed in the

nonlinear regime of plane regular wavetrains. The investigation has also shown

via numerical simulations that the nonlinear mechanism involved in the evolu-

tion of the wavepackets are essentially three-dimensional. The e�ort, however,

could not provide a theoretical model of the nonlinear evolution of wavepack-

ets. It appeared that a simpler three-dimensional wave-systems, namely, a three-

dimensional wavetrain emanating from a point source, could shed some light into

the more complicated three-dimensional wavepacket.

The feature of the nonlinear evolution of wavetrains with which this paper

is concerned is the appearance of longitudinal streaks which have been observed

experimentally . Initially the spanwise structure of the streaks is relatively simple,

but further downstream it becomes more complicated, involving the splitting

of streaks. The weakly nonlinear model here presented links the phenomenon

to a nonlinear generation of longitudinal vortices which would then produce a

mean 
ow distortion throught a lift-up mechanism of redistribution of streamwise

momentum. The development of more complicated spanwise structures are also

addressed here, and are linked to a second order approximation to the weakly

nonlinear model.

2. BRIEF REVIEW OF EXPERIMENTAL RESULTS

Experimental results of the nonlinear evolution of three-dimensional wave-

trains have been presented elsewhere. (Medeiros, 1998). To make this paper

more readable some of the more important conclusions are presented here.

The experiments were carried out in the low turbulence wind tunnel of the

University of Cambridge 1. The laminar boundary layer with a free-stream ve-

locity of 17m/s developed over a 1.68m long 
at plate. The disturbances were

produced by a loudspeaker embedded in the plate. They were introduced into

the 
ow via a .3mm hole in the plate. The streamwise velocity records were ob-

tained with a constant temperature hot-wire anemometer mounted on a computer

controlled traverse gear.

The disturbance introduced was not a continuous wavetrain. A �nite wave-

1Now located at Queen Mary & West�eld College - London



train was used instead, but tests were carried out to ensure that it was long

enough so that its central part behaved like a continuous one. The passage of the

�nite wavetrain can be treated as an event. The ensemble average of 128 events

was taken at each measuring station resulting in a clearer signal. The �rst non-

linear signature of the streamwise evoltuion of the wavetrain was the appearance

of a mean 
ow distortion, see �gure 2 of Medeiros (1998). One interesting feature

of the evolution of this distortion was that initially it was negative, but changed

to positive at latter stages. The distortion appeared to have little e�ect on the

evolution of the wavetrain which grew and decayed in a way that was consistent

with the linear instability theory.

Measurements were also carried out at a number of points across the span,

building a three-dimensional picture of the wave system, see �gure 3 of Medeiros

(1998). The evolution of the mean 
ow distortion �eld was shown by contour

plots in t� z planes at a number of downstream positions. It was observed that

the mean 
ow distortion formed longitudinal streaks. It can also be seen that the

change of sign from negative to positive mean distortion observed was related to

the growth of a positive streak at the center of a negative streak.

3. EARLY NONLINEAR STAGE

The equations of motion for incompressible 
ow read:

r � v = 0; (1)

@v

@t
+ (v � r)v = �rp+

1

R
r

2
v (2)

For a weakly nonlinear analysis we follow (Benney, 1961) and expand the

velocity and the pressure �elds as perturbation series:

v = v0 + �v1 + �2v2; (3)

p = p0 + �p1 + �
2
p2; (4)

where v0 = (u0(y); 0; 0) and p0 represent the base 
ow; and � is a measure of the

amplitude of the primary Tollmien-Schlichting oscillation.

Although the experiments display spatial evolution, the analysis is simpli�ed

if one considers temporal instability. The model can be extended to spatial

instability, but it has not been carried out at this stage. Therefore, hereafter

the wavenumber � will, be taken as real. In a temporal instability model the

disturbances are considered periodic in x. For the three-dimensional wavetrain

all the modes have identical � which is linked to the frequency of the point source



in the spatial case. The primary oscillation can then be represented by:

v1 = v11(y; z; t)e
i�x + v

�

11(y; z; t)e
�i�x; (5)

p1 = p11(y; z; t)e
i�x + p�11(y; z; t)e

�i�x: (6)

In the expression, � stands for complex conjugate.

Substituting the perturbation series with x-periodicity into the equations of

motion (1) and (2)and collecting terms of order � one arrives at:
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Within a weakly nonlinear approach the secondary motion will be composed

of a mean 
ow distortion and a second harmonic oscillation (Craik, 1985):

v2 = v20(y; z; t) + v22(y; z; t)e
2i�x + v

�

22(y; z; t)e
�2i�x; (11)

p2 = p20(y; z; t) + p22(y; z; t)e
2i�x + p�22(y; z; t)e

�2i�x: (12)

Substituting into the equations of motion and collecting terms both of order

�2 ad independent of X yields:
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In the expressions, the �rst subscript corresponds to the order of approximation

whereas the second represents the order of the harmonic.

Within a temporal instability analysis the primary oscillation takes the form

v11 = v̂11(y; z)e
�i�ct (17)

where c is the phase velocity.

In the equation governing the secondary mean motion in the streamwise

direction (13), the third and fourth terms arise from the Reynolds stresses which

were neglected in the equations governing the primary oscillations. The second

term corresponds to the lift-up mechanism by which the streamwise momentum of

the base 
ow is redistributed by convection with velocity v20. For high Reynolds

numbers we drop the viscous term and arrive at a solution:

u20 = �v̂20
du00

dy

e2�cit � 1� 2�cit

(2�ci)2
+ R̂20
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11 + û�11ŵ11); (19)

v20(y; z; t) = v̂20(y; z)e
�2i�ct

: (20)

The double exponential growth shows that the secondary mean motion will even-

tually transcend to �rst order. For small values of ci we �nd that the �rst term

of the expression grows as t2 whereas the second grows as t, indicating that for

large times the lift-up mechanism is dominant over the forcing by the Reynolds

stresses. The spanwise structure of the resulting u20-�eld is, therefore, given by

v̂20. To �nd v̂20 one has to solve the system of coupled equations (13) { (16)....

for given primary oscillations. However, the v̂20-�eld is associated with a longitu-

dinal vorticity �eld. It is easier to solve the equations for the vorticity �eld, for

which one can �nd an uncoupled equation.

The second order mean longitudinal vorticity equation is obtained from

equations (14) and (15)
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where we have neglected the viscous term. The solution also grows in time as a

double exponential
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The spanwise structure is, therefore, given by Ŝ20 which can be calculated from

the primary Tollmien-Schlichting oscillation governed by equations (7){(10).

Equations (7){(10) are in separable form and permit the normal modes

solution

v11(x; y; z; t) = ~v11(y)e
i(�x+�z��ct) (24)

p11(x; y; z; t) = ~p11(y)e
i(�x+�z��ct); (25)

where � is the spanwise wavenumber of the mode.

Substituting into equations (7){(10) yields (Mack ,1984):
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with Dirichlet boundary conditions for u, v and w at both y = 0 and y = 1:

This system of equations is very sti� and presents some di�culties to be solved.

Several techniques can be used to overcome these di�culties. In the current

implementation a �lter technique developed by Kaplan (Mack, 1984) was used.

The equations also permit the simulation of the linear evolution of the dis-

turbances. Assuming that all modes are equally excited at the origem it is pos-

sible to determine the 
ow �eld at a given position in time or space depending

on whether temporal or spatial instability is considered. However, it is known

from experimental (Medeiros, 1998) and theoretical evidence that, because the

boundary layer acts as a �lter, the initial 
at spetrum will, at later stages of the



evolution, result in a spectral distribution that resembles a gaussian curve. We

have therefore modelled the three-dimensional wavetrain as a number of modes

with identical streamwise wavenumber and di�erent spanwise wavenumbers; and

with a gaussian distribution of spectral energy centred on the mode with zero

spanwise wavenumber.

The eigenvectors of these modes were calculated from equations (26) and

(29) and an inverse Fourier transform in the spanwise direction was applied. The

resulting y � z structure of the three-components of the velocity �eld are shown

in �gures 1 and 2. These velocities allow the calculation of Ŝ(y; z) which gives

the structure of the longitudinal vorticity , �gure 3
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Figura 1: Vertical velocity distribution on a y � z plane. Left frame, real part.

Contour levels: (1,.5,.2,.1)�10�3. Right frame, imaginary part. Contour levels:

(1,.5,.2,.1)�10�2:

Figure 3 shows the existence of a pair of counter-rotating vortices. It is

clear that the vertical velocity �eld associated with this vorticity distribution

consists of a region of positive velocity in the region between the vortices and

positive outside the vortices, with a slow decay for larger values of jzj. The

same structure will be imposed on the mean streamwise velocity �eld through

the redistribution of momentum by the lift-up mechanism, equation (13). The

positive vertical velocity will produce a negative mean 
ow distortion whereas the

negative vertical velocity will produce positive distortions. The streak formation

at x=800mm in �gure 3 of Medeiros (1998) is consistent with the existence of

two counter-rotating vortices.
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Figura 2: Vertical velocity distribution on a y � z plane. Left frame, real part.

Right frame, imaginary part. Contour levels: (1,.5,.2,.1)�10�3
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Figura 3: Longitudinal vorticity distribution on a y � z plane. Contour levels:

(1,.5,.2,.1)�10�5

4. LATE NONLINEAR STAGE

The lift-up mechanism described by equation (13) does not consider that as

the secondary mean motion builds up the base 
ow is distorted and at some stage

the streamwise momentum that is redistributed is no longer that of the original

base 
ow, but of a distorted spanwise-dependent pro�le. Since the secondary



mean motion grows as a double exponential, this e�ect should eventually become

important. If one wants to include such e�ects equation (30) should read:

@u20

@t
+ v20

du00

dy
+ �v20

@u20

@y
+ �w20

@u20

@z
+ R̂20(y; z)e

2�cit = 0; (30)

with viscous terms neglected. Just as equation (13), this equation is linear and

describes the convection of the streamwise momentum as a passive scalar.

Analysis of equation (30) for a three-dimensional wavetrain is quite involving

because a large number of spanwise modes has to be considered. However, the

basic features can be illustrated by considering a single three-dimensional mode.

In that case the velocity �eld induced by the streamwise vorticity would be

v20(y; z) = ~v20(y) cos�z w20(y; z) =
�1

�

d~v20(y)

dy
sin�z: (31)

The streamwise mean motion would then develop a spanwise structure

û20(y; z) = ~u200(y) + ~u201(y) cos(�z) + ~u202(y) cos(2�z)

+~u203(y) cos(3�z) + :::; (32)

where the third subscript identi�es the order of the term in the series. A study of

the convergence of the series for Couette base 
ow showed that about 11 terms

are needed (wallefe, 1995). Such analysis has not yet been carried for a Blasius

pro�le, but the model clearly leads to the appearance of the higher spanwise

modes of mean 
ow distortion. This is consistent with the appearance of other

streaks at later stages of the nonlinear evolution.

5. DISCUSSION

Ths paper presents a weakly nonlinear model for the evolution of three-

dimensional wavetrains of small amplitude in boundary layers. The model focuses

on the generation of longitudinal streaks that have been observed in experiments.

The nonlinear regime is divided into two stages. The early stage corresponds to

the appearance of the �rst streaks. The later stage involves the appearance of

other streaks that split the previous ones into a larger number.

The origem of the streaks is explained by the forcing of longitudinal vorticity

by the nonlinear interaction between the vertical and tranversal primary motion.

The model predicts a vorticity distribution that is consistent, in both z and

y directions, with the streak structure. In particular, the model predicts the

appearance of a low velocity streak at the center of the disturbance �eld and

high velocity streaks on each side of the disturbance �eld. In addition, the model

predicts that the mean 
ow distortion is localized inside the boundary layer,

which is in agreement with the experiments.



The late stage was linked to a second order correction to the nonlinear model.

It predicts the generation of higher spanwise harmonics which is consistent with

the appearance of other streaks.

It is known that longitudinal streaks are one of the ingredients of turbulent


ow. It is conjectured that these results might provide a short cut between the

early wave-like behaviour and the vortical structures observed in turbulent 
ow.

This short cut would take place for highly three-dimensional waves.
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